You choose, we deliver
If you are interested in this story, you might be interested in others from The Journal Gazette. Go to www.journalgazette.net/newsletter and pick the subjects you care most about. We'll deliver your customized daily news report at 3 a.m. Fort Wayne time, right to your email.

Health

Advertisement
Dr. Anthony Atala holds the “scaffolding” for a human kidney created by a 3-D printer in a laboratory at Wake Forest University in Winston-Salem, N.C.

Researchers grow human organs

Patients’ own cells, 3-D printers help; hearts too complex

Associated Press photos
Claudia Irizarry, left, plays with her daughter Angela at their home in Lewisburg, Pa. Researchers built Angela a crucial blood vessel in a lab using her bone marrow cells.

– By the time 10-year-old Sarah Murnaghan finally got a lung transplant last week, she’d been waiting for months, and her parents had sued to give her a better shot at surgery.

Her cystic fibrosis was threatening her life, and her case spurred a debate on how to allocate donor organs. Lungs and other organs for transplant are scarce.

But what if there were another way? What if you could grow a custom-made organ in a lab?

It sounds incredible. But just a three-hour drive from the Philadelphia hospital where Sarah got her transplant, another little girl is benefiting from just that sort of technology. Two years ago, Angela Irizarry of Lewisburg, Pa., needed a crucial blood vessel. Researchers built her one in a laboratory, using cells from her own bone marrow. Today the 5-year-old sings, dances and dreams of becoming a firefighter – and a doctor.

Growing lungs and other organs for transplant is still in the future, but scientists are working toward that goal. In North Carolina, a 3-D printer builds prototype kidneys. In several labs, scientists study how to build on the internal scaffolding of hearts, lungs, livers and kidneys of people and pigs to make custom-made implants.

Here’s the dream scenario: A patient donates cells, either from a biopsy or maybe just a blood draw. A lab uses them, or cells made from them, to seed onto a scaffold that’s shaped like the organ he needs. Then, says Dr. Harald Ott of Massachusetts General Hospital, “we can regenerate an organ that will not be rejected (and can be) grown on demand and transplanted surgically, similar to a donor organ.”

That won’t happen anytime soon for solid organs like lungs or livers. But as Angela Irizarry’s case shows, simpler body parts are already being used as researchers explore the possibilities of the field.

Just a few weeks ago, a girl in Peoria, Ill., got an experimental windpipe that used a synthetic scaffold covered in stem cells from her own bone marrow. More than a dozen patients have had similar operations.

Dozens of people are thriving with experimental bladders made from their own cells, as are more than a dozen who have urethras made from their own bladder tissue. A Swedish girl who got a vein made with her marrow cells to bypass a liver vein blockage in 2011 is still doing well, her surgeon says.

Angela was born in 2007 with a heart that had only one functional pumping chamber, a potentially lethal condition that leaves the body short of oxygen. Standard treatment involves a series of operations, the last of which implants a blood vessel near the heart to connect a vein to an artery, which effectively rearranges the organ’s plumbing.

Yale University surgeons told Angela’s parents they could try to create that conduit with bone marrow cells.

So, over 12 hours one day, doctors took bone marrow from Angela and extracted certain cells, seeded them onto a 5-inch-long biodegradable tube, incubated them for two hours, and then implanted the graft into Angela to grow into a blood vessel. Before the surgery, she couldn’t run or play without getting tired and turning blue from lack of oxygen, she said. Now, “she is able to have a normal play day.”

So far, the lab-grown parts implanted in people have involved fairly simple structures – basically sheets, tubes and hollow containers, notes Anthony Atala of Wake Forest University whose lab also has made scaffolds for noses and ears. Solid internal organs like livers, hearts and kidneys are far more complex to make.

Advertisement